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Abstract
A streamline is a curve which is everywhere tan-

gent to a steady fluid velobity field. A stream surface
is the locus of an infinite set of such curves, rooted
at every point along a continuous originating line seg-
ment, or rake. A stream surface may be approximated
by the triangular tiling of adjacent pairs of integrated
streamlines. Such a surface may be refined by repeat-
edly splitting the widest of the ribbons by the insertion
of new curves.

A more efficient method begins with a discretization
of the rake. These particles are repeatedly advanced a
short distance through the flow field. New polygons
are appended to the downstream edge of the surface.
The spacing of the particles is adjusted to maintain
an adequate sampling across the width of the growing
surface. This approach more efficiently accesses the
flow field volume data and produces a better distribu-
tion of points over the two dimensions of the stream
surface.

1 Introduction

Tangent curves and narrow ribbons are often used
to depict the velocity field of numerically simulated
fluid flows, but the visual interpretation of such images
is often difficult. More recent efforts have generalized
the technique to construct a two-dimensional tangent
surface. These sheets are more visually effective, but
their construction is much more time-consuming. The
curve and ribbon methods are described here, followed
by a description of some earlier methods for stream
surface construction. These ideas provide the context
for the improved surface construction algorithm de-
scribed in the remaining sections.

1.1 Curves and Ribbons

Many methods of vector field visualization depend
on the calculation of tangent curves through the field.
When the field is represented by a grid of sample
points, the calculation of these curves is generally .per-
formed using numerical integration over some pmce-
wise interpolant. If the field is the velocity of a fluid,
each curve defines the path traveled by a massless par-
ticle advected through the flow; such curves are called
streamlines.

Most flow visualization packages allow the user to
specify a set of initial points from which a set of these
curves is computed. This set of points is often called
a rake, a name taken from the array of tubing used in
wind tunnels to introduce multiple streams of smoke
into the flow.

Careful use of depth cues can aid in the interpreta-
tion of such images. Intensity cueing, stereopsis, and
motion are perhaps the most commonly applied meth-
ods. Another aid is the representation of each curve as
a narrow ribbon(e.g. Belie [1], Kerlick [9]) or a space-
filling and shaded cylindrical tube (e.g. Dickinson [2],
Haimes [5]).

Schroeder and his colleagues [13] describe a model
called the stream polygon. The deformation of an in-
finitesimal fluid element is tracked along the length
of a streamline. This deformation is depicted graphi-
cally by the changing shape of a sequence of polygons

placed at regular intervals along the computed curve.

1.2 Stream Surfaces

Just as a streamline is the locus of a single point
advected over time, a stream surface is the two-
dimensional locus of an advected infinitely-malleable
initial seed curve. Alternatively, the sheet is the locus
of all the streamlines with a seed point on the initial
line. The initial curve is a one-dimensional analogue
of the initial seed point used in the placement of a
single streamline.

A few carefully-placed rakes can create surfaces
which clearly convey the shape of a complicated flow
field. The shading and obscuration of a surface pro-
vides visual cues which help one to interpret two-
dimensional pictures of this three-dimensional model.
Surfaces curve both across and down their length, and
widen in divergent flow. Surfaces can be overlaid with
texture to represent additional measures of the flow,
can be rendered with variable transparency to mimic
the appearance of empirical smoke injections.

Krueger [11] implemented a proof-of-concept sys-
tem for the visualization of flow fields using a novel
user interface called VideoDesk. A video camera was
used to merge an outline of the user's hands into the
three-dimensional space of the data. One of the visu-
alization models supported in this environment was a
simple stream surface, constructed with a polygonal
tiling of adjacent pairs of streamlines. Ribbons which
exceeded a specified width were truncated, with the
latter portion represented by two narrower ribbons.

Helman [6, 7] has implemented a system which
identifies the topologically significant curves on the
solid boundaries of a vehicle. The software then at-

tempts to construct the topological separatrices, that
is, the stream surfaces which emanate from these lines
and extend into the surrounding flow. Helman used
a ribbon tiling approach to construct these surfaces,
splitting the widest ribbons down their entire length.

Eder [3] developed a distributed system for comput-
ing stream surfaces. After the user specified the rake
for a new surface, the system computed between fifty
and two hundred curves using a vectorized code run-
ning on a Siemens-Nixdorf VP-200. These curves were
copied into the memory of a workstation, and the sur-
face so described resampled into a rectangular array
of points. A two-pass filtering marked some of these
points as extraneous, and the points which remained
were tiled with polygons to represent the surface.

1.3 Problems

Typical flow fields diverge greatly and the surfaces
embedded in such flows twist and fold with wild aban-
don. This deformation complicates the polygonal ap-
proximation of the surface. Divergence of the flow
causes adjacent streamlines to separate, while shear-
ing tends to widen the gap between points on the same
time-line. The two-phase approach taken by Eder can
therefore leave sparsely sampled regions in the finished
polygonal sheet.

The adaptive ribbon-splitting methods of Helman
and Kreuger produce a better distribution of sample
points over the two dimensions of a diverging surface;



however,thecompletetracingof individualcurvesre-
sultsinscatteredaccesspatternstothememorypages
andcachelinesof thesampledflowdata.

An improvedalgorithm,describedhere,advances
a a row(or front) of particles in a tightly-clustered
group. This approach more efficiently accesses the
sampled field data and provides better control over
the sampling density across the width of the evolving
surface representation. An implementation of these
ideas was built using the SuperGlue programming en-
vironment [8].

Section 2 describes some of the mathematics of the
stream surface concept. Section 3 surveys some meth-
ods for the polygonal tiling of ribbons, one of which is
used in the advancing front algorithm described in sec-
tion 4. Methods for controlling the density of particles
across the advancing front are presented in section 5.
This paper concludes with a review of the advantages
and the potential pitfalls of this new technique.

2 Mathematics
A stream surface is a two-dimensional parametric

surface embedded in the three-dimensional domain of
the flow field. Constructing the surface may be viewed
as the problem of generating a well-distributed collec-
tion of sample points over the two dimensions of that
surface, followed by a polygonal tiling of those points.

2.1 Parameterization

An ideal stream surface is the locus of an infinite
number of streamlines. Each one may be uniquely
identified by the fractional displacement (s E [0, 1]) of
its seed point along the originating rake. The sur-
face supports a second set of curves which are the
advected images of the rake at an infinite sequence
of downstream displacements. These curves, called
time-lines in fluid flow, may be labelled by a param-
eter (t E [0, Y]). These two sets of curves define a
two-dimensional coordinate space over the surface, il-
lustrated in figure 1.

The surface is bounded on one edge by the rake
itself, which defines the time-line (to). The edges of
the surface are marked by streamlines (so) and
These are joined by the sequence oftime-lines}_/:

which are increasingly distorted by the flow.

2.2 Polygonal approximation

This continuous two-dimensional sheet may be nu-
merically approximated and depicted using polygons.
The most straightforward implementation creates a
rectangular mesh of points at regular intervals in (s, t)
space. For each point (si, tj), the first coordinate de-
fines the displacement along the rake of the containing
streamline, while the second value defines the accu-
mulated integration stepsize downstream along that
curve.

Each streamline (s_) may be computed by numeri-
cal integration using a fixed stepsize to produce a se-
quence of points (si, to) through (s_, t,). An adaptive
stepsizing method could be used, if followed by a re-
sampling of the curve at fixed intervals. Normals may
then be computed over this rectangular mesh and the
result rendered.
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Figure 1: Parametric space over a stream surface.

As described above, a simple rectangular mesh can-
not adequately represent a highly convoluted surface
without a massive number of sample points. Efficient,
yet accurate, representation of the surface demands
adaptive sampling over its two dimensions.

The sampling density along the length of each
streamline may be controlled by adaptively adjusting
the integration stepsize so that regions of high curva-
ture are captured. These methods have been carefully
analyzed and are trusted by the numerical scientific
community.

The time-lines, which span the surface in the cross-
flow direction, also exhibit curvature; therefore, the
approximation of the surface must be augmented by
a varying number of samples along that dimension.
The splitting of ribbons increases the density of sam-
ples across the polygonal surface. The surface con-
struction methods of Helman and Kreuger, and the
method presented here, all are based on the splitting
of ribbons. The polygonal tiling of such ribbons is
discussed in the next section.

3 Tiling of ribbons
A number of different methods can create a ribbon

by constructing polygons which span the gap between
a pair of curves. All of these methods create triangles
which connect the seed points of the two curves and
extend downstream. Each new triangle shares a com-
mon edge with its predecessor, and consumes a third
point from one of the two bordering curves.

The entire ribbon is constructed as the result of

a sequence of choices which advance along the two
curves, producing a new triangle at each step. Two
curves with (N + 1) points in each can therefore be
tiled with triangles in (2N choose N) different ways.
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Figure 2: Regular and globally-minimal tiling. Figure 3: Greedy minimal-width tiling of a ribbon.

Any one of several algorithms may be used to select
a "reasonable" tiling from among these possibilities.
Regular and globally-minimal tiling, shown in figure 2,
have been used in the past. The present algorithm
uses a locally-greedy algorithm which is depicted in
figure 3.

3.1 Regular Tiling

The simplest method alternates sides, thereby con-
suming point values on the two curves at an equal
rate. Krueger [10] used this method in the VideoDesk
application. It works well when the flow field is well
behaved; in highly sheared flow, lockstep connection
of these points produces long skinny triangles. This
tiling may also exhaust the points on one curve before
reaching the end of the other.

Siclari [14] proposed normalizing the curves by arc
length to overcome this difficulty, but this raises simi-
lar problems in helical flow. The curve which lies clos-
est to the axis will be straighter than its partner, and
triangles will once again span an increasingly greater
distance.

3.2 Minimal tiling

The problems caused by shear can be resolved by
an irregular tiling of each ribbon. The construction
and the display of such a tiling is more difficult, but
the shape of these triangles is closer to isosceles.

The polygonal tiling which is globally minimal in
some measure can be obtained by the method of Fuchs,
Kedem and Uselton[4]. This algorithm uses a dy-
namic programming approach to find the minimally-
measured tiling which connects two closed loops of
points. In this application the initial points of the two
adjacent curves must be connected to one another, so

a simpler version of the algorithm may be used. Hel-
man [6, 7] used this method to construct surfaces of
minimum total surface area.

3.3 Greedy tiling

The globally-minimal algorithm requires all of the
points on the borders of each ribbon. A greedy tiling
method produces similar results with less computa-
tional cost, and can begin producing triangles for disr
play before the integration of the curves has been com-
pleted.

The tiling begins at the rake, and continues down
the length of a ribbon. The two possible triangles at
each iteration are compared; the one with the shortest
leading edge is appended to the growing ribbon. In
practice, when the curves are close together and well
sampled, this greedy method produces results quite
similar to those of the globally-minimal method.

Figure 3 illustrates the implementation used in the
current system, in which two tracerstructures are used
to generate the sequence of points which define each
curve. Each tracer maintains the context required
to advance a particle through a sampled vector field.
Multi-step methods are supported by the storage of a
short list of previously-computed points. Integration
may be carried out in either the physical or the grid-
local computational coordinates. Transition across
the boundaries of abutting or overlapping blocks of
sample points is always carried out in physical space,
since the computational coordinate-spaces of different
blocks are incompatible.

A ribbon structure is used to connect these points
with a sequence of triangles. At each iteration, the
two most recently connected points (L0, R0) and their
successors (L1, R1) form a quadrilateral which must



;i!.... besplit alongoneof its twodiagonals.Theshortest
of thetwodiagonals((L0,R1) or (L1, R0)) forms the
new leading edge of the ribbon and the base of the
next quadrilateral.

The straightforward ribbon-splitting construction
algorithm retains an entire curve until the neighboring
curves become available; only then may the polygo-
nal tiling commence. The greedy minimal-width algo-
rithm maintains only a few points along each curve,
and it outputs point and tiling information in a steady
progression from the start of each ribbon to the far
edge of the sheet.

The position of each point is recorded in physical
space, computational space, and the surface paramet-
ric space. Each point record also carries an integer
tag which indicates the index of its data written to
the output buffers. A triangle is represented by the
integer indices for the data of its three vertices. Each
vertex is written only once, but its index usually ap-
pears in the triple for several triangles.

4 Advancing front
By advancing a set of tracers as a group, we can pro-

duce a well-sampled surface while maintaining good
locality of access into the flow data. Points are eas-
ily inserted into this advancing front of points when
it is becomes too sparsely sampled, and points can be
removed when the sampling becomes needlessly dense.

4.1 Sweeping
The advancing front is represented by a linked-

list of alternating _racer and ribbon structures. Each
ribbon holds pointers to its lefthand and righthand
tracers. Each tracer, except those which create the
streamlines (so) and (sl), produces points which are
shared by two ribbons.

The labels "left" and "right" are conventions which
define the relative ordering of the tracers across the
width of the surface. In fact, the actual implemen-
tation performs the sweeping advances in alternating
directions across the front.

Each iteration across the front begins with the "left-
most" ribbon, and advances the particles on its two
neighboring curves some short distance. The greedy
minimal-width tiling algorithm generates each trian-
gle, selecting whichever point produces the triangle
with the shortest leading edge.

When the diagonal (L0, R1) is selected, the right-
hand neighbor of the current ribbon is advanced until
the two ribbons are once again the same length along
the shared curve. If necessary, the third ribbon is
brought abreast with the second, and so on. Each rib-
bon is advanced along its righthand side as long as
the leading edge of each new triangle is shorter than
that of it predecessor. This method keeps the front
locally orthogonal to streamlines, tends to reduce the
overall length of the front, and thereby provides better
control over the sampling density.

advance_ribbon(self) {

caught_up = FALSE;
while (1) {

L0,L1, R0,R1 *-- nex_ quad
left_dg = length(Ll, RO) ;
right_dg = length(LO,R1) ;
min_dg = MIN(left_dg, right_dg) ;
advance_on_left = (left_dg == min_dg);

if (caught_up _
((advance_on_left) II

(right_dg > prev_dg))) return;

if (advance_on_left) {
write_riangle(LO,RO,Ll);
free_oint(LO);

caught_up = TRUE;
} else {

write_riangle(LO,RO,R1)
free_point(RO);
advancemibbon(rightmeighbor(self));

}
prev_dg = min_dg;
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Figure 4: Splitting a ribbon. Figure 5: Merging two ribbons.

5 Controlling the density
The advancing front of points forms a discretization

of a cross-flow line on the ideal surface. Particles may
be added to or removed from the front to maintain

an acceptable sampling density across this line. Rib-
bons which encounter massive divergence of the flow
may be truncated, thus tearing the surface around this
obstacle.

5.1 Adding a particle
A ribbon can be split by the insertion of a new

tracer structure and a new ribbon structure into the

linked-list which represents the front. One new trian-
gle, shown in figure 4, must be added to the surface
to make the transition from one ribbon to its two nar-

rower replacements.
The test which determines when to insert a point

must be efficient, since it is evaluated at every iter-
ation of the ribbon advancement. High-order meth-
ods which measure the curvature of the front might
be valuable in some applications, but simpler meth-
ods have proven themselves acceptable for most cases.
The current implementation splits a ribbon when the
width of the current quadrilateral grows to more than
twice its height.

When a new particle must be added, it is identi-
fied by its location in the parametric coordinate-space
of the surface. This new particle must have an (s, t)
location between those of the two particles (L1, R1)
which have drifted apart. The three-dimensional phys-
ical and computational positions of this new particle
must then be determined.

The simplest method merely interpolates in phys-
ical coordinates midway between the most recent
points on the bordering curves. A more accurate

method is to solve the initial value problem starting
at (staid,tO), but this requires considerable expense.
A compromise solution periodically saves an interpo-
lated point in the middle of each ribbon, perhaps every
ten iterations. When a ribbon then needs to be split,
one of these recent positions can be advanced a short
distance to where the ribbon has exceeded acceptable
limits.

5.2 Removing a particle
When a particle is deemed unnecessary, it is re-

moved from the front. The adjoining ribbons are
merged into a single, wider replacement. This requires
the creation of three new triangles which make the
transition between the leading edges of the two rib-
bons and the single leading edge of the new wider
replacement. This transition is shown in figure 5,
which also demonstrates that the merging of ribbons
advances the new ribbon by one step along both its
neighboring curves, and thus requires the subsequent
advancement of the righthand neighbor as described
above.

The test for when to merge ribbons must consider
the abutting quadrilaterals of two neighboring rib-
bons. In the current implementation, two ribbons are
merged if these six points are roughly eoplanar and
if their height is greater than their combined width.
Note that failure to merge two ribbons produces need-
less additional polygons in the final result, while fail-
ure to split a ribbons can produce an inaccurate rep-
resentation of the true surface.

5.3 Ripping
When a portion of the front is stretched rapidly, it

is sometimes preferable to sever the front and to con-
tinue the independent advancement of these two por-



tions.Thesoftwaredetectsthisconditionbycompar-
ingtherelativedirectiontravelledbythepair(L0,R0)
of adjacent particles. When these are very close and
headed in almost opposite directions, then an obstacle
to the flow is assumed to be near. The current ribbon
is truncated, and its neighboring curves become bor-
dering edges of two separate fronts.

5.4 Examples
This ripping of the surface is depicted in the

color images, which depict a flow field computed by
Rogers [12]. The grid defines a single cylindrical
coordinate-space with 38 points in the vertical direc-
tion, 38 points radially, and 76 points about the cir-
cumference. This gives a total of 109,744 grid points,
with position and velocity recorded at each point for
a memory size of (g x (3 + 3) x 4) = 2.6 Mbytes.
This is a moderately sized solution, with present-day
datasets now ranging in the one to two "Mpoint"
range. Each surface was fully computed in about three
wall-clock seconds on an SGI VGX-320, and each con-
tains roughly 2500 triangles.

This solution represents an incompressible flow im-
pinging a vertical post mounted on a flat plate. Twin
vortices are shed from this obstacle and the entire flow
is reflected about a horizontal symmetry plane across
the top of the data depicted here. Figure A is a side
view with the flow passing from left to right; figure B
shows the same surfaces from a three-quarter angle of
view.

Figures C and D show three-quarter and top views
of a stream surface which impinges the base of the
post on the upstream face. The flow reverses direc-
tion in this region, and the surface tears in the pres-
ence of the incoming flow. Note the attenuation of the
textured time-lines, and the increasingly acute angles
these make with the streamlines.

Figure E demonstrates the maintenance of the front
orthogonal to the local flow direction. Figure F high-
lights the triangles which were inserted when ribbons
were split in this highly divergent region.

6 Conclusions

This algorithm has been implemented and used by
the author to illustrate a number of flow field solu-
tions. The code is currently being ruggedized for pro-
duction use.

6.1 Advantages
This new algorithm provides a method for the inter-

active exploration of flow field data. It offers increased
performance, produces improved sampling densities
over the constructed surface, and allows the rapid dis-
play of interim results.

performance The ribbon-based methods are most eas-
ily implemented by calculating the full length of
each new curve. This causes repeated access to
the same vector samples, and this can increase the
number of page and cache faults. The advancing
front method uses spatial coherence to improve
the memory access patterns.

sampling qualily The advancing front method begins
at the rake and works downstream across the

width of the surface. The sampling density across
this line can be continually adjusted to meet the
demands of the local curvature of the field.

interaction The ribbon splitting methods repeatedly
replace a single previously-computed ribbon with
two narrower ribbons. If the user interface is

designed to continually update an image of the
refining surface, then that image must be en-
tirely redrawn. Furthermore, the surface normals
are thrown away and new normals must be com-
puted. The advancing front method produces no
interim results which would require a full redis-
play. Newly-computed triangles are simply drawn
into the Z-buffer and color-planes of an evolving
image.

6.2 Pitfalls
These surfaces can be a useful tool for the investi-

gation of flow field data. Like any other visualization
tool, they can be dangerous to the unwary and mis-
used by the unscrupulous.

accuracy of curves The representation of the surface
cannot be any more accurate than the curves on
which it is constructed. These curves are nu-

merically integrated though a field which is de-
fined by a piecewise interpolation over a set of
numerically calculated sample values. Many op-
portunities arise for the introduction of error, and
the gee-whiz factor of nicely rendered surfaces in-
creases the risk that these considerations will be

forgotten, ignored, or swept under the rug.

insufficient splitting If the test for splitting is insuf-
ficiently rigorous, then a lengthwise fold in the
surface can develop between two adjacent points
on the front. This crease can continue to grow
in height, and will not be represented in the final
result. Unfortunately, such folds are quite com-
mon in fluid velocity fields. This problem can be
avoided by maintaining a sampling density on the
front which is comparable to the local sampling
density of the original 3D flow field data.

overeager merging If ribbons are merged excessively,
the true shape of the ideal surface will be coarsely
described by distracting facets. These artifacts
may obscure important information in the under-
lying data.

6.3 Summary
Maintenance of a front of particles is an efficient

method of generating a set of sample points over a two-
dimensional stream surface. The resulting triangles
are approximately equilateral and of a size adapted to
the local curvature of the surface. These surfaces have
been used to depict structures in complicated flow field
data.
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A) Two stream surfaces shed from a vertical post in an
incompressible flow field.

B) Three-quarter view of two stream surfaces, from
above and leeward.

C) Stream surface in the flow-reversal region near the
base of the post on the windward side.

C '_- . ! i/ _7-........

D) The same stream surface viewed from above and tex-
tured with time-lines.

E) Color-coded representation of the separate sweeps
across the expanding sheet.

F) The expanding'surface with the splittin_ of ribbons
marked by dark triangles.




